暑假来临,闲来无事,听有同学在玩arduino,挺想尝试看看,但是不想买啊,正好手中有一套ATmege128的开发板。以前听过arduino是由avr封装而成,于是就想把这avr开发板改造下。GOOGLE了下,还是有办法的。
其实Arduino,就是在AVR单片机上烧录了一个bootloader,在通过arduino集成开发环境与单片机进行通讯,继而进行片上编程。
个人原创,转载请注明原文地址:http://blog.csdn.net/embbnux/article/details/9391781
AVR环境:
编译环境: ubuntu + avr-gcc
烧写工具: avrdude+usbasp
具体构建步骤查看上一篇博客。
avr环境多种多样,在linux下还可以用eclipse集成环境。在window下推荐用WINAVR,其实本质上和linux下一样是用avr-gcc,烧写工具用prgisp.当然有了avr jtag仿真器就更好了,不用usbasp.
下载arduino工具:
arduino.cc/en/Main/Software
我下载的linux 64位版本,下载后解压到主目录下。
开发板:
BK-AVR128开发板
一、制作属于atmega128的bootloader
代码主要是arduino工具自带的,编译时有点问题,我改了几处。
可以直接到我的资源里面下载编译好的hex文件直接烧写到单片机就可以了:
download.csdn.net/detail/canyue102/5809329
源代码boot _mega128.c:
/**********************************************************/ /* Serial Bootloader for Atmel megaAVR Controllers */ /* */ /* tested with ATmega8, ATmega128 and ATmega168 */ /* should work with other mega's, see code for details */ /* */ /* */ /* */ /* */ /* 20090308: integrated Mega changes into main bootloader */ /* source by D. Mellis */ /* 20080930: hacked for Arduino Mega (with the 1280 */ /* processor, backwards compatible) */ /* by D. Cuartielles */ /* 20070626: hacked for Arduino Diecimila (which auto- */ /* resets when a USB connection is made to it) */ /* by D. Mellis */ /* 20060802: hacked for Arduino by D. Cuartielles */ /* based on a previous hack by D. Mellis */ /* and D. Cuartielles */ /* */ /* Monitor and debug functions were added to the original */ /* code by Dr. Erik Lins, chip45.com. (See below) */ /* */ /* Thanks to Karl Pitrich for fixing a bootloader pin */ /* problem and more informative LED blinking! */ /* */ /* For the latest version see: */ /* http://www.chip45.com/ */ /* */ /* ------------------------------------------------------ */ /* */ /* based on stk500boot.c */ /* Copyright (c) 2003, Jason P. Kyle */ /* All rights reserved. */ /* see avr1.org for original file and information */ /* */ /* This program is free software; you can redistribute it */ /* and/or modify it under the terms of the GNU General */ /* Public License as published by the Free Software */ /* Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will */ /* be useful, but WITHOUT ANY WARRANTY; without even the */ /* implied warranty of MERCHANTABILITY or FITNESS FOR A */ /* PARTICULAR PURPOSE. See the GNU General Public */ /* License for more details. */ /* */ /* You should have received a copy of the GNU General */ /* Public License along with this program; if not, write */ /* to the Free Software Foundation, Inc., */ /* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* */ /* Licence can be viewed at */ /* http://www.fsf.org/licenses/gpl.txt */ /* */ /* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */ /* m8515,m8535. ATmega161 has a very small boot block so */ /* isn't supported. */ /* */ /* Tested with m168 */ /**********************************************************/ /* $Id$ */ /* some includes */ #include <inttypes.h> #include <avr/io.h> #include <avr/pgmspace.h> #include <avr/interrupt.h> #include <avr/wdt.h> #include <util/delay.h> /* the current avr-libc eeprom functions do not support the ATmega168 */ /* own eeprom write/read functions are used instead */ #if !defined(__AVR_ATmega168__) || !defined(__AVR_ATmega328P__) #include <avr/eeprom.h> #endif /* Use the F_CPU defined in Makefile */ /* 20060803: hacked by DojoCorp */ /* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */ /* set the waiting time for the bootloader */ /* get this from the Makefile instead */ #define MAX_TIME_COUNT (F_CPU>>1) /* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */ #define MAX_ERROR_COUNT 5 /* set the UART baud rate */ /* 20060803: hacked by DojoCorp */ //#define BAUD_RATE 115200 #ifndef BAUD_RATE #define BAUD_RATE 19200 #endif /* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */ /* never allow AVR Studio to do an update !!!! */ #define HW_VER 0x02 #define SW_MAJOR 0x01 #define SW_MINOR 0x10 /* Adjust to suit whatever pin your hardware uses to enter the bootloader */ /* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */ /* ATmega1280 has four UARTS, but for Arduino Mega, we will only use RXD0 to get code */ /* BL0... means UART0, BL1... means UART1 */ #ifdef __AVR_ATmega128__ #define BL_DDR DDRF #define BL_PORT PORTF #define BL_PIN PINF #define BL0 PINF7 #define BL1 PINF6 #elif defined __AVR_ATmega1280__ /* we just don't do anything for the MEGA and enter bootloader on reset anyway*/ #else /* other ATmegas have only one UART, so only one pin is defined to enter bootloader */ #define BL_DDR DDRD #define BL_PORT PORTD #define BL_PIN PIND #define BL PIND6 #endif /* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */ /* if monitor functions are included, LED goes on after monitor was entered */ #if defined __AVR_ATmega128__ || defined __AVR_ATmega1280__ /* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128, Arduino Mega) */ #define LED_DDR DDRB #define LED_PORT PORTB #define LED_PIN PINB #define LED PINB7 #else /* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duomilanuove */ /* other boards like e.g. Crumb8, Crumb168 are using PB2 */ #define LED_DDR DDRB #define LED_PORT PORTB #define LED_PIN PINB #define LED PINB5 #endif /* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */ #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) #define MONITOR 1 #endif /* define various device id's */ /* manufacturer byte is always the same */ #define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :( #if defined __AVR_ATmega1280__ #define SIG2 0x97 #define SIG3 0x03 #define PAGE_SIZE 0x80U //128 words #elif defined __AVR_ATmega1281__ #define SIG2 0x97 #define SIG3 0x04 #define PAGE_SIZE 0x80U //128 words #elif defined __AVR_ATmega128__ #define SIG2 0x97 #define SIG3 0x02 #define PAGE_SIZE 0x80U //128 words #elif defined __AVR_ATmega64__ #define SIG2 0x96 #define SIG3 0x02 #define PAGE_SIZE 0x80U //128 words #elif defined __AVR_ATmega32__ #define SIG2 0x95 #define SIG3 0x02 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega16__ #define SIG2 0x94 #define SIG3 0x03 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega8__ #define SIG2 0x93 #define SIG3 0x07 #define PAGE_SIZE 0x20U //32 words #elif defined __AVR_ATmega88__ #define SIG2 0x93 #define SIG3 0x0a #define PAGE_SIZE 0x20U //32 words #elif defined __AVR_ATmega168__ #define SIG2 0x94 #define SIG3 0x06 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega328P__ #define SIG2 0x95 #define SIG3 0x0F #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega162__ #define SIG2 0x94 #define SIG3 0x04 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega163__ #define SIG2 0x94 #define SIG3 0x02 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega169__ #define SIG2 0x94 #define SIG3 0x05 #define PAGE_SIZE 0x40U //64 words #elif defined __AVR_ATmega8515__ #define SIG2 0x93 #define SIG3 0x06 #define PAGE_SIZE 0x20U //32 words #elif defined __AVR_ATmega8535__ #define SIG2 0x93 #define SIG3 0x08 #define PAGE_SIZE 0x20U //32 words #endif /* function prototypes */ void putch(char); char getch(void); void getNch(uint8_t); void byte_response(uint8_t); void nothing_response(void); char gethex(void); void puthex(char); void flash_led(uint8_t); /* some variables */ union address_union { uint16_t word; uint8_t byte[2]; } address; union length_union { uint16_t word; uint8_t byte[2]; } length; struct flags_struct { unsigned eeprom : 1; unsigned rampz : 1; } flags; uint8_t buff[256]; uint8_t address_high; uint8_t pagesz=0x80; uint8_t i; uint8_t bootuart = 0; uint8_t NUM_LED_FLASHES=3; uint8_t error_count = 0; void (*app_start)(void) = 0x0000; /* main program starts here */ int main(void) { uint8_t ch,ch2; uint16_t w; #ifdef WATCHDOG_MODS ch = MCUSR; MCUSR = 0; WDTCSR |= _BV(WDCE) | _BV(WDE); WDTCSR = 0; // Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot. if (! (ch & _BV(EXTRF))) // if its a not an external reset... app_start(); // skip bootloader #else asm volatile("nop\n\t"); #endif /* set pin direction for bootloader pin and enable pullup */ /* for ATmega128, two pins need to be initialized */ #ifdef __AVR_ATmega128__ BL_DDR &= ~_BV(BL0); BL_DDR &= ~_BV(BL1); BL_PORT |= _BV(BL0); BL_PORT |= _BV(BL1); #else /* We run the bootloader regardless of the state of this pin. Thus, don't put it in a different state than the other pins. --DAM, 070709 This also applies to Arduino Mega -- DC, 080930 BL_DDR &= ~_BV(BL); BL_PORT |= _BV(BL); */ #endif #ifdef __AVR_ATmega128__ /* check which UART should be used for booting */ if(bit_is_clear(BL_PIN, BL0)) { bootuart = 1; } else if(bit_is_clear(BL_PIN, BL1)) { bootuart = 2; } #endif #if defined __AVR_ATmega1280__ /* the mega1280 chip has four serial ports ... we could eventually use any of them, or not? */ /* however, we don't wanna confuse people, to avoid making a mess, we will stick to RXD0, TXD0 */ bootuart = 1; #endif /* check if flash is programmed already, if not start bootloader anyway */ if(pgm_read_byte_near(0x0000) != 0xFF) { #ifdef __AVR_ATmega128__ /* no UART was selected, start application */ if(!bootuart) { app_start(); } #else /* check if bootloader pin is set low */ /* we don't start this part neither for the m8, nor m168 */ //if(bit_is_set(BL_PIN, BL)) { // app_start(); // } #endif } #ifdef __AVR_ATmega128__ /* no bootuart was selected, default to uart 0 */ if(!bootuart) { bootuart = 1; } #endif /* initialize UART(s) depending on CPU defined */ #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) if(bootuart == 1) { UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1); UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8; UCSR0A = 0x00; UCSR0C = 0x06; UCSR0B = _BV(TXEN0)|_BV(RXEN0); } if(bootuart == 2) { UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1); UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8; UCSR1A = 0x00; UCSR1C = 0x06; UCSR1B = _BV(TXEN1)|_BV(RXEN1); } #elif defined __AVR_ATmega163__ UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1); UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8; UCSRA = 0x00; UCSRB = _BV(TXEN)|_BV(RXEN); #elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) #ifdef DOUBLE_SPEED UCSR0A = (1<<U2X0); //Double speed mode USART0 UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*8L)-1); UBRR0H = (F_CPU/(BAUD_RATE*8L)-1) >> 8; #else UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1); UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8; #endif UCSR0B = (1<<RXEN0) | (1<<TXEN0); UCSR0C = (1<<UCSZ00) | (1<<UCSZ01); /* Enable internal pull-up resistor on pin D0 (RX), in order to supress line noise that prevents the bootloader from timing out (DAM: 20070509) */ DDRD &= ~_BV(PIND0); PORTD |= _BV(PIND0); #elif defined __AVR_ATmega8__ /* m8 */ UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate UBRRL = (((F_CPU/BAUD_RATE)/16)-1); UCSRB = (1<<RXEN)|(1<<TXEN); // enable Rx & Tx UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // config USART; 8N1 #else /* m16,m32,m169,m8515,m8535 */ UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1); UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8; UCSRA = 0x00; UCSRC = 0x06; UCSRB = _BV(TXEN)|_BV(RXEN); #endif #if defined __AVR_ATmega1280__ /* Enable internal pull-up resistor on pin D0 (RX), in order to supress line noise that prevents the bootloader from timing out (DAM: 20070509) */ /* feature added to the Arduino Mega --DC: 080930 */ DDRE &= ~_BV(PINE0); PORTE |= _BV(PINE0); #endif /* set LED pin as output */ LED_DDR |= _BV(LED); /* flash onboard LED to signal entering of bootloader */ #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) // 4x for UART0, 5x for UART1 flash_led(NUM_LED_FLASHES + bootuart); #else flash_led(NUM_LED_FLASHES); #endif /* 20050803: by DojoCorp, this is one of the parts provoking the system to stop listening, cancelled from the original */ //putch('\0'); /* forever loop */ for (;;) { /* get character from UART */ ch = getch(); /* A bunch of if...else if... gives smaller code than switch...case ! */ /* Hello is anyone home ? */ if(ch=='0') { nothing_response(); } /* Request programmer ID */ /* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry */ /* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares. */ else if(ch=='1') { if (getch() == ' ') { putch(0x14); putch('A'); putch('V'); putch('R'); putch(' '); putch('I'); putch('S'); putch('P'); putch(0x10); } else { if (++error_count == MAX_ERROR_COUNT) app_start(); } } /* AVR ISP/STK500 board commands DON'T CARE so default nothing_response */ else if(ch=='@') { ch2 = getch(); if (ch2>0x85) getch(); nothing_response(); } /* AVR ISP/STK500 board requests */ else if(ch=='A') { ch2 = getch(); if(ch2==0x80) byte_response(HW_VER); // Hardware version else if(ch2==0x81) byte_response(SW_MAJOR); // Software major version else if(ch2==0x82) byte_response(SW_MINOR); // Software minor version else if(ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56 else byte_response(0x00); // Covers various unnecessary responses we don't care about } /* Device Parameters DON'T CARE, DEVICE IS FIXED */ else if(ch=='B') { getNch(20); nothing_response(); } /* Parallel programming stuff DON'T CARE */ else if(ch=='E') { getNch(5); nothing_response(); } /* P: Enter programming mode */ /* R: Erase device, don't care as we will erase one page at a time anyway. */ else if(ch=='P' || ch=='R') { nothing_response(); } /* Leave programming mode */ else if(ch=='Q') { nothing_response(); #ifdef WATCHDOG_MODS // autoreset via watchdog (sneaky!) WDTCSR = _BV(WDE); while (1); // 16 ms #endif } /* Set address, little endian. EEPROM in bytes, FLASH in words */ /* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */ /* This might explain why little endian was used here, big endian used everywhere else. */ else if(ch=='U') { address.byte[0] = getch(); address.byte[1] = getch(); nothing_response(); } /* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */ else if(ch=='V') { if (getch() == 0x30) { getch(); ch = getch(); getch(); if (ch == 0) { byte_response(SIG1); } else if (ch == 1) { byte_response(SIG2); } else { byte_response(SIG3); } } else { getNch(3); byte_response(0x00); } } /* Write memory, length is big endian and is in bytes */ else if(ch=='d') { length.byte[1] = getch(); length.byte[0] = getch(); flags.eeprom = 0; if (getch() == 'E') flags.eeprom = 1; for (w=0;w<length.word;w++) { buff[w] = getch(); // Store data in buffer, can't keep up with serial data stream whilst programming pages } if (getch() == ' ') { if (flags.eeprom) { //Write to EEPROM one byte at a time address.word <<= 1; for(w=0;w<length.word;w++) { #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) while(EECR & (1<<EEPE)); EEAR = (uint16_t)(void *)address.word; EEDR = buff[w]; EECR |= (1<<EEMPE); EECR |= (1<<EEPE); #else eeprom_write_byte((void *)address.word,buff[w]); #endif address.word++; } } else { //Write to FLASH one page at a time if (address.byte[1]>127) address_high = 0x01; //Only possible with m128, m256 will need 3rd address byte. FIXME else address_high = 0x00; #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) RAMPZ = address_high; #endif address.word = address.word << 1; //address * 2 -> byte location /* if ((length.byte[0] & 0x01) == 0x01) length.word++; //Even up an odd number of bytes */ if ((length.byte[0] & 0x01)) length.word++; //Even up an odd number of bytes cli(); //Disable interrupts, just to be sure #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) while(bit_is_set(EECR,EEPE)); //Wait for previous EEPROM writes to complete #else while(bit_is_set(EECR,EEWE)); //Wait for previous EEPROM writes to complete #endif asm volatile( "clr r17 \n\t" //page_word_count "lds r30,address \n\t" //Address of FLASH location (in bytes) "lds r31,address+1 \n\t" "ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM "ldi r29,hi8(buff) \n\t" "lds r24,length \n\t" //Length of data to be written (in bytes) "lds r25,length+1 \n\t" "length_loop: \n\t" //Main loop, repeat for number of words in block "cpi r17,0x00 \n\t" //If page_word_count=0 then erase page "brne no_page_erase \n\t" "wait_spm1: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm1 \n\t" "ldi r16,0x03 \n\t" //Erase page pointed to by Z "sts %0,r16 \n\t" "spm \n\t" #ifdef __AVR_ATmega163__ ".word 0xFFFF \n\t" "nop \n\t" #endif "wait_spm2: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm2 \n\t" "ldi r16,0x11 \n\t" //Re-enable RWW section "sts %0,r16 \n\t" "spm \n\t" #ifdef __AVR_ATmega163__ ".word 0xFFFF \n\t" "nop \n\t" #endif "no_page_erase: \n\t" "ld r0,Y+ \n\t" //Write 2 bytes into page buffer "ld r1,Y+ \n\t" "wait_spm3: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm3 \n\t" "ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer "sts %0,r16 \n\t" "spm \n\t" "inc r17 \n\t" //page_word_count++ "cpi r17,%1 \n\t" "brlo same_page \n\t" //Still same page in FLASH "write_page: \n\t" "clr r17 \n\t" //New page, write current one first "wait_spm4: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm4 \n\t" #ifdef __AVR_ATmega163__ "andi r30,0x80 \n\t" // m163 requires Z6:Z1 to be zero during page write #endif "ldi r16,0x05 \n\t" //Write page pointed to by Z "sts %0,r16 \n\t" "spm \n\t" #ifdef __AVR_ATmega163__ ".word 0xFFFF \n\t" "nop \n\t" "ori r30,0x7E \n\t" // recover Z6:Z1 state after page write (had to be zero during write) #endif "wait_spm5: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm5 \n\t" "ldi r16,0x11 \n\t" //Re-enable RWW section "sts %0,r16 \n\t" "spm \n\t" #ifdef __AVR_ATmega163__ ".word 0xFFFF \n\t" "nop \n\t" #endif "same_page: \n\t" "adiw r30,2 \n\t" //Next word in FLASH "sbiw r24,2 \n\t" //length-2 "breq final_write \n\t" //Finished "rjmp length_loop \n\t" "final_write: \n\t" "cpi r17,0 \n\t" "breq block_done \n\t" "adiw r24,2 \n\t" //length+2, fool above check on length after short page write "rjmp write_page \n\t" "block_done: \n\t" "clr __zero_reg__ \n\t" //restore zero register #if defined __AVR_ATmega168__ || __AVR_ATmega328P__ || __AVR_ATmega128__ || __AVR_ATmega1280__ || __AVR_ATmega1281__ : "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31" #else : "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31" #endif ); /* Should really add a wait for RWW section to be enabled, don't actually need it since we never */ /* exit the bootloader without a power cycle anyhow */ } putch(0x14); putch(0x10); } else { if (++error_count == MAX_ERROR_COUNT) app_start(); } } /* Read memory block mode, length is big endian. */ else if(ch=='t') { length.byte[1] = getch(); length.byte[0] = getch(); #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) if (address.word>0x7FFF) flags.rampz = 1; // No go with m256, FIXME else flags.rampz = 0; #endif address.word = address.word << 1; // address * 2 -> byte location if (getch() == 'E') flags.eeprom = 1; else flags.eeprom = 0; if (getch() == ' ') { // Command terminator putch(0x14); for (w=0;w < length.word;w++) { // Can handle odd and even lengths okay if (flags.eeprom) { // Byte access EEPROM read #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) while(EECR & (1<<EEPE)); EEAR = (uint16_t)(void *)address.word; EECR |= (1<<EERE); putch(EEDR); #else putch(eeprom_read_byte((void *)address.word)); #endif address.word++; } else { if (!flags.rampz) putch(pgm_read_byte_near(address.word)); #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) else putch(pgm_read_byte_far(address.word + 0x10000)); // Hmmmm, yuck FIXME when m256 arrvies #endif address.word++; } } putch(0x10); } } /* Get device signature bytes */ else if(ch=='u') { if (getch() == ' ') { putch(0x14); putch(SIG1); putch(SIG2); putch(SIG3); putch(0x10); } else { if (++error_count == MAX_ERROR_COUNT) app_start(); } } /* Read oscillator calibration byte */ else if(ch=='v') { byte_response(0x00); } #if defined MONITOR /* here come the extended monitor commands by Erik Lins */ /* check for three times exclamation mark pressed */ else if(ch=='!') { ch = getch(); if(ch=='!') { ch = getch(); if(ch=='!') { PGM_P welcome = ""; #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) uint16_t extaddr; #endif uint8_t addrl, addrh; #ifdef CRUMB128 welcome = "ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r"; #elif defined PROBOMEGA128 welcome = "ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r"; #elif defined SAVVY128 welcome = "ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r"; #elif defined __AVR_ATmega1280__ welcome = "ATmegaBOOT / Arduino Mega - (C) Arduino LLC - 090930\n\r"; #endif /* turn on LED */ LED_DDR |= _BV(LED); LED_PORT &= ~_BV(LED); /* print a welcome message and command overview */ for(i=0; welcome[i] != '\0'; ++i) { putch(welcome[i]); } /* test for valid commands */ for(;;) { putch('\n'); putch('\r'); putch(':'); putch(' '); ch = getch(); putch(ch); /* toggle LED */ if(ch == 't') { if(bit_is_set(LED_PIN,LED)) { LED_PORT &= ~_BV(LED); putch('1'); } else { LED_PORT |= _BV(LED); putch('0'); } } /* read byte from address */ else if(ch == 'r') { ch = getch(); putch(ch); addrh = gethex(); addrl = gethex(); putch('='); ch = *(uint8_t *)((addrh << 8) + addrl); puthex(ch); } /* write a byte to address */ else if(ch == 'w') { ch = getch(); putch(ch); addrh = gethex(); addrl = gethex(); ch = getch(); putch(ch); ch = gethex(); *(uint8_t *)((addrh << 8) + addrl) = ch; } /* read from uart and echo back */ else if(ch == 'u') { for(;;) { putch(getch()); } } #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) /* external bus loop */ else if(ch == 'b') { putch('b'); putch('u'); putch('s'); MCUCR = 0x80; XMCRA = 0; XMCRB = 0; extaddr = 0x1100; for(;;) { ch = *(volatile uint8_t *)extaddr; if(++extaddr == 0) { extaddr = 0x1100; } } } #endif else if(ch == 'j') { app_start(); } } /* end of monitor functions */ } } } /* end of monitor */ #endif else if (++error_count == MAX_ERROR_COUNT) { app_start(); } } /* end of forever loop */ } char gethexnib(void) { char a; a = getch(); putch(a); if(a >= 'a') { return (a - 'a' + 0x0a); } else if(a >= '0') { return(a - '0'); } return a; } char gethex(void) { return (gethexnib() << 4) + gethexnib(); } void puthex(char ch) { char ah; ah = ch >> 4; if(ah >= 0x0a) { ah = ah - 0x0a + 'a'; } else { ah += '0'; } ch &= 0x0f; if(ch >= 0x0a) { ch = ch - 0x0a + 'a'; } else { ch += '0'; } putch(ah); putch(ch); } void putch(char ch) { #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) if(bootuart == 1) { while (!(UCSR0A & _BV(UDRE0))); UDR0 = ch; } else if (bootuart == 2) { while (!(UCSR1A & _BV(UDRE1))); UDR1 = ch; } #elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) while (!(UCSR0A & _BV(UDRE0))); UDR0 = ch; #else /* m8,16,32,169,8515,8535,163 */ while (!(UCSRA & _BV(UDRE))); UDR = ch; #endif } char getch(void) { #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) uint32_t count = 0; if(bootuart == 1) { while(!(UCSR0A & _BV(RXC0))) { /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/ /* HACKME:: here is a good place to count times*/ count++; if (count > MAX_TIME_COUNT) app_start(); } return UDR0; } else if(bootuart == 2) { while(!(UCSR1A & _BV(RXC1))) { /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/ /* HACKME:: here is a good place to count times*/ count++; if (count > MAX_TIME_COUNT) app_start(); } return UDR1; } return 0; #elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) uint32_t count = 0; while(!(UCSR0A & _BV(RXC0))){ /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/ /* HACKME:: here is a good place to count times*/ count++; if (count > MAX_TIME_COUNT) app_start(); } return UDR0; #else /* m8,16,32,169,8515,8535,163 */ uint32_t count = 0; while(!(UCSRA & _BV(RXC))){ /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/ /* HACKME:: here is a good place to count times*/ count++; if (count > MAX_TIME_COUNT) app_start(); } return UDR; #endif } void getNch(uint8_t count) { while(count--) { #if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) if(bootuart == 1) { while(!(UCSR0A & _BV(RXC0))); UDR0; } else if(bootuart == 2) { while(!(UCSR1A & _BV(RXC1))); UDR1; } #elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) getch(); #else /* m8,16,32,169,8515,8535,163 */ /* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/ //while(!(UCSRA & _BV(RXC))); //UDR; getch(); // need to handle time out #endif } } void byte_response(uint8_t val) { if (getch() == ' ') { putch(0x14); putch(val); putch(0x10); } else { if (++error_count == MAX_ERROR_COUNT) app_start(); } } void nothing_response(void) { if (getch() == ' ') { putch(0x14); putch(0x10); } else { if (++error_count == MAX_ERROR_COUNT) app_start(); } } void flash_led(uint8_t count) { while (count--) { LED_PORT |= _BV(LED); _delay_ms(100); LED_PORT &= ~_BV(LED); _delay_ms(100); } } /* end of file */
编译:
avr-gcc -mmcu=atmega48 -Wall -Os -o boot_mega128.o boot_mega128.c
avr-objcopy -j .text -j .data -O boot_mega128.o boot_mega.hex
烧写:
用usbasp连接电脑和开发板
sudo avrdude -p m128 -c usbasp -P usbasp -Uefuse:w:0xff:m -Uhfuse:w:0xca:m -Ulfuse:w:0xff:m -Ulock:w:0x3F:m
sudo avrdude -p m128 -c usbasp -e -U flash:w:boot_mega128.hex -Ulock:w:0x0F:m
二、Arduino开发环境设置
参考:
arduinoexplained.blogspot.com/2012/03/custom-board-programming-on-arduino-10.html
解压刚才下载的arduino
进入该目录
修改/hardware/arduino/avr/boards.txt
在最后添加:
############################################################### atmega128A.name=Custom ATmega 128 Breakout Board using AVRISP atmega128A.upload.using=avrispmkii atmega128A.upload.maximum_size=126976 atmega128A.bootloader.low_fuses=0xFF atmega128A.bootloader.high_fuses=0xCA atmega128A.bootloader.extended_fuses=0xFF atmega128A.bootloader.path=atmega atmega128A.bootloader.file=boot_mega128.hex atmega128A.bootloader.unlock_bits=0x3F atmega128A.bootloader.lock_bits=0x0F atmega128A.build.mcu=atmega128 atmega128A.build.f_cpu=8000000L atmega128A.build.core=arduino atmega128A.build.variant=standard ##############################################################
三、设置arduino引脚定义
在网上没有找到atmega128的arduino pin mapping,于是自己写了一个
在/hardware/arduino/avr/variant文件夹下新建一个文件夹mega128
在mega128里面新建一个pins_arduino.h
/* pins_arduino.h - Pin definition functions for Arduino ATmega128 Part of Arduino - http://blog.csdn.net/canyue102/article/details/9451771 Copyright (c) 2013 Dongyu_canyue102 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #ifndef Pins_Arduino_h #define Pins_Arduino_h #include <avr/pgmspace.h> #define NUM_DIGITAL_PINS 53 #define NUM_ANALOG_INPUTS 8 #define analogInputToDigitalPin(p) ((p < 8) ? (p) + 45 : -1) #define digitalPinHasPWM(p) (((p) >= 12 && (p) <= 15) || ((p) >= 35 && (p)<= 37)) static const uint8_t SS = 8; static const uint8_t MOSI = 10; static const uint8_t MISO = 11; static const uint8_t SCK = 9; static const uint8_t SDA = 25; static const uint8_t SCL = 24; static const uint8_t LED_BUILTIN = 12; static const uint8_t A0 = 40; static const uint8_t A1 = 41; static const uint8_t A2 = 42; static const uint8_t A3 = 43; static const uint8_t A4 = 44; static const uint8_t A5 = 45; static const uint8_t A6 = 46; static const uint8_t A7 = 47; // A majority of the pins are NOT PCINTs, SO BE WARNED (i.e. you cannot use them as receive pins) // Only pins available for RECEIVE (TRANSMIT can be on any pin): // (I've deliberately left out pin mapping to the Hardware USARTs - seems senseless to me) // Pins: 0-53 #define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 53) ? (&PCICR) : ((uint8_t *)0)) #define digitalPinToPCICRbit(p) ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <=47 )) ? 0 : \ ( (((p) >= 48) && ((p) <= 52)) ? 2 : \ 0 ) ) #define digitalPinToPCMSK(p) ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <= 47)) ? (&PCMSK0) : \ ( (((p) >= 48) && ((p) <= 52)) ? (&PCMSK2) : \ ((uint8_t *)0) ) ) #define digitalPinToPCMSKbit(p) ( (((p) >= 0) && ((p) <= 7)) ? ((p) - 6) : \ ( ((p) == 8) ? 3 : \ ( ((p) == 9) ? 2 : \ ( ((p) == 10) ? 1 : \ ( ((p) == 11) ? 0 : \ ( (((p) >= 12) && ((p) <= 52)) ? ((p) - 12) : \ 0 ) ) ) ) ) ) #ifdef ARDUINO_MAIN const uint16_t PROGMEM port_to_mode_PGM[] = { NOT_A_PORT, (uint16_t) &DDRA, (uint16_t) &DDRB, (uint16_t) &DDRC, (uint16_t) &DDRD, (uint16_t) &DDRE, (uint16_t) &DDRF, (uint16_t) &DDRG, }; const uint16_t PROGMEM port_to_output_PGM[] = { NOT_A_PORT, (uint16_t) &PORTA, (uint16_t) &PORTB, (uint16_t) &PORTC, (uint16_t) &PORTD, (uint16_t) &PORTE, (uint16_t) &PORTF, (uint16_t) &PORTG, }; const uint16_t PROGMEM port_to_input_PGM[] = { NOT_A_PIN, (uint16_t) &PINA, (uint16_t) &PINB, (uint16_t) &PINC, (uint16_t) &PIND, (uint16_t) &PINE, (uint16_t) &PINF, (uint16_t) &PING, }; const uint8_t PROGMEM digital_pin_to_port_PGM[] = { // PORTLIST // ------------------------------------------- PA , // PA 0 ** 0 ** D22 PA , // PA 1 ** 1 ** D23 PA , // PA 2 ** 2 ** D24 PA , // PA 3 ** 3 ** D25 PA , // PA 4 ** 4 ** D26 PA , // PA 5 ** 5 ** D27 PA , // PA 6 ** 6 ** D28 PA , // PA 7 ** 7 ** D29 PB , // PB 0 ** 8 ** SPI_MISO PB , // PB 1 ** 9 ** SPI_MOSI PB , // PB 2 ** 10 ** SPI_SCK PB , // PB 3 ** 11 ** SPI_SS PB , // PB 4 ** 12 ** PWM10 PB , // PB 5 ** 13 ** PWM11 PB , // PB 6 ** 14 ** PWM12 PB , // PB 7 ** 15 ** PWM13 PC , // PC 0 ** 16 ** D30 PC , // PC 1 ** 17 ** D31 PC , // PC 2 ** 18 ** D32 PC , // PC 3 ** 19 ** D33 PC , // PC 4 ** 20 ** D34 PC , // PC 5 ** 21 ** D35 PC , // PC 6 ** 22 ** D36 PC , // PC 7 ** 23 ** D37 PD , // PD 0 ** 24 ** USART1_TX PD , // PD 1 ** 25 ** USART1_RX PD , // PD 2 ** 26 ** I2C_SDA PD , // PD 3 ** 27 ** I2C_SCL PD , // PD 4 ** 28 ** D38 PD , // PD 5 ** 29 ** I2C_SDA PD , // PD 6 ** 30 ** I2C_SCL PD , // PD 7 ** 31 ** D38 PE , // PE 0 ** 32 ** USART0_RX PE , // PE 1 ** 33 ** USART0_TX PE , // PE 2 ** 34 ** PWM2 PE , // PE 3 ** 35 ** PWM3 PE , // PE 4 ** 36 ** PWM5 PE , // PE 5 ** 37 ** PWM2 PE , // PE 6 ** 38 ** PWM3 PE , // PE 7 ** 39 ** PWM5 PF , // PF 0 ** 40 ** A0 PF , // PF 1 ** 41 ** A1 PF , // PF 2 ** 42 ** A2 PF , // PF 3 ** 43 ** A3 PF , // PF 4 ** 44 ** A4 PF , // PF 5 ** 45 ** A5 PF , // PF 6 ** 46 ** A6 PF , // PF 7 ** 47 ** A7 PG , // PG 0 ** 48 ** D39 PG , // PG 1 ** 49 ** D40 PG , // PG 2 ** 50 ** D41 PG , // PG 3 ** 51 ** D41 PG , // PG 4 ** 52 ** D41 }; const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = { // PIN IN PORT // ------------------------------------------- _BV( 0 ) , // PA 0 ** 22 ** D22 _BV( 1 ) , // PA 1 ** 23 ** D23 _BV( 2 ) , // PA 2 ** 24 ** D24 _BV( 3 ) , // PA 3 ** 25 ** D25 _BV( 4 ) , // PA 4 ** 26 ** D26 _BV( 5 ) , // PA 5 ** 27 ** D27 _BV( 6 ) , // PA 6 ** 28 ** D28 _BV( 7 ) , // PA 7 ** 29 ** D29 _BV( 0 ) , // PB 3 ** 50 ** SPI_MISO _BV( 1 ) , // PB 2 ** 51 ** SPI_MOSI _BV( 2 ) , // PB 1 ** 52 ** SPI_SCK _BV( 3 ) , // PB 0 ** 53 ** SPI_SS _BV( 4 ) , // PB 4 ** 10 ** PWM10 _BV( 5 ) , // PB 5 ** 11 ** PWM11 _BV( 6 ) , // PB 6 ** 12 ** PWM12 _BV( 7 ) , // PB 7 ** 13 ** PWM13 _BV( 0 ) , // PC 7 ** 30 ** D30 _BV( 1 ) , // PC 6 ** 31 ** D31 _BV( 2 ) , // PC 5 ** 32 ** D32 _BV( 3 ) , // PC 4 ** 33 ** D33 _BV( 4 ) , // PC 3 ** 34 ** D34 _BV( 5 ) , // PC 2 ** 35 ** D35 _BV( 6 ) , // PC 1 ** 36 ** D36 _BV( 7 ) , // PC 0 ** 37 ** D37 _BV( 0 ) , // PD 3 ** 18 ** USART1_TX _BV( 1 ) , // PD 2 ** 19 ** USART1_RX _BV( 2 ) , // PD 1 ** 20 ** I2C_SDA _BV( 3 ) , // PD 0 ** 21 ** I2C_SCL _BV( 4 ) , // PD 3 ** 18 ** USART1_TX _BV( 5 ) , // PD 2 ** 19 ** USART1_RX _BV( 6 ) , // PD 1 ** 20 ** I2C_SDA _BV( 7 ) , // PD 0 ** 21 ** I2C_SCL _BV( 0 ) , // PE 0 ** 0 ** USART0_RX _BV( 1 ) , // PE 1 ** 1 ** USART0_TX _BV( 2 ) , // PE 4 ** 2 ** PWM2 _BV( 3 ) , // PE 5 ** 3 ** PWM3 _BV( 4 ) , // PE 0 ** 0 ** USART0_RX _BV( 5 ) , // PE 1 ** 1 ** USART0_TX _BV( 6 ) , // PE 4 ** 2 ** PWM2 _BV( 7 ) , // PE 5 ** 3 ** PWM3 _BV( 0 ) , // PF 0 ** 54 ** A0 _BV( 1 ) , // PF 1 ** 55 ** A1 _BV( 2 ) , // PF 2 ** 56 ** A2 _BV( 3 ) , // PF 3 ** 57 ** A3 _BV( 4 ) , // PF 4 ** 58 ** A4 _BV( 5 ) , // PF 5 ** 59 ** A5 _BV( 6 ) , // PF 6 ** 60 ** A6 _BV( 7 ) , // PF 7 ** 61 ** A7 _BV( 0 ) , // PG 0 ** 62 ** A8 _BV( 1 ) , // PG 1 ** 63 ** A9 _BV( 2 ) , // PG 2 ** 64 ** A10 _BV( 3 ) , // PG 3 ** 65 ** A11 _BV( 4 ) , // PG 4 ** 66 ** A12 }; const uint8_t PROGMEM digital_pin_to_timer_PGM[] = { // TIMERS // ------------------------------------------- NOT_ON_TIMER , // PA 0 ** 22 ** D22 NOT_ON_TIMER , // PA 1 ** 23 ** D23 NOT_ON_TIMER , // PA 2 ** 24 ** D24 NOT_ON_TIMER , // PA 3 ** 25 ** D25 NOT_ON_TIMER , // PA 4 ** 26 ** D26 NOT_ON_TIMER , // PA 5 ** 27 ** D27 NOT_ON_TIMER , // PA 6 ** 28 ** D28 NOT_ON_TIMER , // PA 7 ** 29 ** D29 NOT_ON_TIMER , // PB 0 ** 13 ** PWM13 NOT_ON_TIMER , // PB 1 ** 50 ** SPI_MISO NOT_ON_TIMER , // PB 2 ** 51 *7* SPI_MOSI NOT_ON_TIMER , // PB 3 ** 52 ** SPI_SCK TIMER0A , // PB 4 ** 53 ** SPI_SS TIMER1A , // PB 5 ** 10 ** PWM10 TIMER1B , // PB 6 ** 11 ** PWM11 TIMER2A , // PB 7 ** 12 ** PWM12 NOT_ON_TIMER , // PC 0 ** 30 ** D30 NOT_ON_TIMER , // PC 1 ** 31 ** D31 NOT_ON_TIMER , // PC 2 ** 32 ** D32 NOT_ON_TIMER , // PC 3 ** 33 ** D33 NOT_ON_TIMER , // PC 4 ** 34 ** D34 NOT_ON_TIMER , // PC 5 ** 35 ** D35 NOT_ON_TIMER , // PC 6 ** 36 ** D36 NOT_ON_TIMER , // PC 7 ** 37 ** D37 NOT_ON_TIMER , // PD 0 ** 18 ** USART1_TX NOT_ON_TIMER , // PD 1 ** 19 ** USART1_RX NOT_ON_TIMER , // PD 2 ** 20 ** I2C_SDA NOT_ON_TIMER , // PD 3 ** 21 ** I2C_SCL NOT_ON_TIMER , // PD 4 ** 19 ** USART1_RX NOT_ON_TIMER , // PD 5 ** 20 ** I2C_SDA NOT_ON_TIMER , // PD 6 ** 21 ** I2C_SCL NOT_ON_TIMER , // PD 7 ** 21 ** I2C_SCL NOT_ON_TIMER , // PE 0 ** 0 ** USART0_RX NOT_ON_TIMER , // PE 1 ** 1 ** USART0_TX NOT_ON_TIMER , // PE 2 ** 2 ** PWM2 TIMER3A , // PE 3 ** 3 ** PWM3 TIMER3B , // PE 4 ** 0 ** USART0_RX TIMER3C , // PE 5 ** 1 ** USART0_TX NOT_ON_TIMER , // PE 6 ** 2 ** PWM2 NOT_ON_TIMER , // PE 7 ** 3 ** PWM3 NOT_ON_TIMER , // PG 0 ** 39 ** D39 NOT_ON_TIMER , // PG 1 ** 40 ** D40 NOT_ON_TIMER , // PG 2 ** 41 ** D41 NOT_ON_TIMER , // PG 3 ** 4 ** PWM4 NOT_ON_TIMER , // PG 4 ** 41 ** D41 }; #endif #endif
再将boards.txt的
atmega128A.build.variant=standard
改为
atmega128A.build.variant=mega128
arduino io | 主芯片 IO 口 | 外部资源 1 | 外部资源 2 | 外部资源 3 | 外部资源 4 |
0 | PA0/A/D0 | 流水灯(D1) | 数码管(位 1) | LCD1602(D0) | LCD12864(D0) |
1 | PA1 | 流水灯(D2) | 数码管(位 2) | LCD1602(D1) | LCD12864(D1) |
2 | PA2 | 流水灯(D3) | 数码管(位 3) | LCD1602(D2) | LCD12864(D2) |
3 | PA3 | 流水灯(D4) | 数码管(位 4) | LCD1602(D3) | LCD12864(D3) |
4 | PA4 | 流水灯(D5) | 数码管(位 5) | LCD1602(D4) | LCD12864(D4) |
5 | PA5 | 流水灯(D6) | 数码管(位 6) | LCD1602(D5) | LCD12864(D5) |
6 | PA6 | 流水灯(D7) | 数码管(位 7) | LCD1602(D6) | LCD12864(D6) |
7 | PA7 | 流水灯(D8) | 数码管(位 8) | LCD1602(D7) | LCD12864(D7) |
8 | PB0/SS | 步进电机 | |||
9 | PB1/SCK | 步进电机 | |||
10 | PB2/MOSI | 步进电机 | |||
11 | PB3/MISO | 步进电机 | |||
12 | PB4/OC0 | 直流电机 | PWM(D9) | ||
13 | PB5/OC1A | LCD1602(RS) | LCD12864(RS) | ||
14 | PB6/OC1B | LCD1602(RW) | LCD12864 | ||
15 | PB7/OC1C | LCD1602(EN) | (RW) | ||
16 | PC0/A8 | 数码管(段 A) | LCD12864(EN) | ||
17 | PC1 | 数码管(段 B) | |||
18 | PC2 | 数码管(段 C) | |||
19 | PC3 | 数码管(段 D) | |||
20 | PC4 | 数码管(段 E) | |||
21 | PC5 | 数码管(段 F) | |||
22 | PC6 | 数码管(段 G) | |||
23 | PC7 | 数码管(段 dp) | |||
24 | PD0/SCL/INT0 | 矩阵键盘(行 1) | 按键 K17 | AT24C02(SCL) | |
25 | PD1/SDA/INT1 | 矩阵键盘(行 2) | 按键 K18 | AT24C02(SDA) | |
26 | PD2/RXD1/INT2 | 矩阵键盘(行 3) | 按键 K110 | PSII(DAT) | 红外线接收 |
27 | PD3/TXD1/INT3 | 矩阵键盘(行 4) | 按键 K20 | PSII(CLK) | |
28 | PD4/ICP1 | 矩阵键盘(列 1) | |||
29 | PD5/XCK1 | 矩阵键盘(列 2) | |||
30 | PD6/T1 | 矩阵键盘(列 3) | |||
31 | PD7/T2 | 矩阵键盘(列 4) | |||
32 | PE0/RXD0/PDI | 串口(RXD) | |||
33 | PE1/TXD0/PDO | 串口(TXD) | |||
34 | PE2/XCK0/AIN0 | DS1302(SCLK) | |||
35 | PE3/OC3A/AIN1 | DS1302(I/0) | |||
36 | PE4/OC3B/INT4 | DS1302(RST) | |||
37 | PE5/OC3C/INT5 | 空闲 | |||
38 | PE6/T3/INT6 | DS18B20 | |||
39 | PE7/ICP3/INT7 | 蜂鸣器 | |||
40 | PF0/ADC0 | ADC 输入 | |||
41 | PF1/ADC1 | 数码管段选锁存 | |||
42 | PF2 | 数码管位选锁存 | |||
43 | PF3 | 流水灯锁存 | |||
44 | PF4 | JTAG(TCK) | |||
45 | PF5 | JTAG(TMS) | |||
46 | PF6 | JTAG(TDO) | |||
47 | PF7 | JTAG(TDI) | |||
48 | PG0/WR | 空闲 | |||
49 | PG1/RD | 空闲 | |||
50 | PG2/ALE | 空闲 | |||
51 | PG3/TOSC2 | 空闲 | |||
52 | PG4/TOSC2 | 空闲 |
四、 最后启动arduino开发环境:
sudo ./arduino
测试程序:
int ledPin =12; void setup() { // put your setup code here, to run once: pinMode(ledPin,OUTPUT); } void loop() { // put your main code here, to run repeatedly: digitalWrite(ledPin,HIGH); delay(1000); digitalWrite(ledPin,LOW); delay(1000); }
点击upload则在开发板上开始一个一闪一闪的led。第12pin是PB4开发板上正好对应一个LED。
好吧,可是开始arduino的开发之旅了。要学好arduino还是要花很多精力和时间的。
按楼主的方法后,出现avrdude: stk500_getsync(): not in sync: resp=0x0 请问如何解决
烧写器的问题吧
通过Arduino as ISP烧写的时候出现错误Error while burning bootloader: missing ‘bootloader.tool’ configuration parameter
求问大侠是怎么回事
能不能发 .hex文件给我啊。。邮箱如上。。谢谢。。。
文章里面有下载链接